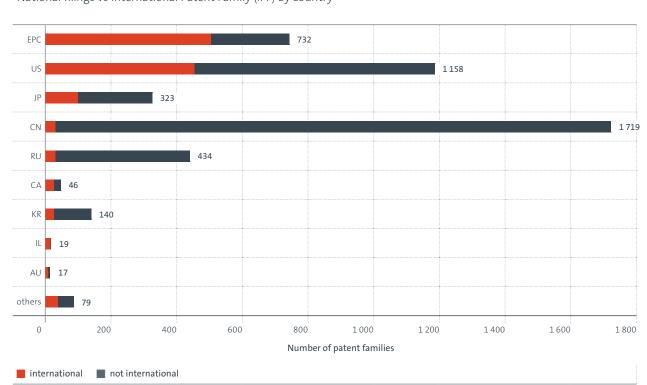


Contents

Executive Summary	03
1. Space propulsion	06
1.1. Introduction to the propulsion market	06
1.2. Propulsion as a key enabler	06
1.3. Space propulsion systems	30
1.3.1. Chemical propulsion	80
1.3.2. Electric propulsion	09
1.3.3. Alternative space propulsion	10
1.3.4. Technology developments	11
1.4. The study	12
1.5. Using patent information	13
1.6. Methodology	13
2. Analysis of patents	19
2.1. Breakdown by region	15
2.1.1. International breakdown	15
2.1.2. Europe-specific findings	21
2.2. Divided by propulsion principles	25
2.2.1. Overall picture	25
2.2.2. Chemical propulsion	28
2.2.3. Electric propulsion	32
2.2.4. Alternative propulsion concepts	36
2.2.5. Propellants	38
3. Conclusion	43
Glossary and notes	43

Executive Summary

Propulsion is a key element in all space activities because it provides the fundamental function of producing thrust to move launchers, satellites, and other assets from Earth to space or within space.


Space propulsion encompasses different principles, most prominently chemical and electric propulsion concepts as well as alternative and emerging concepts accompanied by a variety of propellants and even "fuel-less" concepts, such as solar sails.

The significance of propulsion capabilities stems from their transversal **enabling role for a spectrum of applications**, including access to space; collision avoidance; on-orbit servicing, assembly, manufacturing and space exploration.

For this study a total number of 4559 patent families filed at 52 patent authorities have been identified with applicants registered in 43 countries and inventors residing in 53 countries. The data set comprises 1178 international patent families (IPF) in four distinct technology principles, namely chemical propulsion, electrical propulsion, "alternative" propulsion and propellants.

Figure E1

National filings vs International Patent Family (IPF) by country

